New Perturbation Iteration Solutions for Fredholm and Volterra Integral Equations
نویسندگان
چکیده
As one of themost important subjects of mathematics, differential and integral equations are widely used to model a variety of physical problems. Perturbation methods have been used in search of approximate analytical solutions for over a century [1–3]. Algebraic equations, integral-differential equations, and difference equations could be solved by these techniques approximately. However, a major difficulty in the implementation of perturbation methods is the requirement of a small parameter or inserting a small artificial parameter in the equation. Solutions obtained by these methods are therefore restricted by a validity range of physical parameters. To eliminate the small parameter assumption in regular perturbation analysis, iteration techniques are incorporated with perturbations. Many attempts in this issue appear in the literature recently [4–13]. Recently, a new perturbation-iteration algorithm has been developed by Pakdemirli and his coworkers [14–16]. A preliminary study of developing root finding algorithms systematically [17–19] finally led to generalization of the method to differential equations also [14–16]. An iterative scheme is constituted over the perturbation expansion in the new technique. The method has been successfully implemented to first-order equations [15] and Bratu-type second-order equations [14]. In this paper, this new technique is applied to integral equations for the first time. Fredholm and Volterra integral equations
منابع مشابه
Some New Existence, Uniqueness and Convergence Results for Fractional Volterra-Fredholm Integro-Differential Equations
This paper demonstrates a study on some significant latest innovations in the approximated techniques to find the approximate solutions of Caputo fractional Volterra-Fredholm integro-differential equations. To this aim, the study uses the modified Adomian decomposition method (MADM) and the modified variational iteration method (MVIM). A wider applicability of these techniques are based on thei...
متن کاملA computational wavelet method for numerical solution of stochastic Volterra-Fredholm integral equations
A Legendre wavelet method is presented for numerical solutions of stochastic Volterra-Fredholm integral equations. The main characteristic of the proposed method is that it reduces stochastic Volterra-Fredholm integral equations into a linear system of equations. Convergence and error analysis of the Legendre wavelets basis are investigated. The efficiency and accuracy of the proposed method wa...
متن کاملSolution of Nonlinear Fredholm-Volterra Integral Equations via Block-Pulse Functions
In this paper, a new simple direct method to solve nonlinear Fredholm-Volterra integral equations is presented. By using Block-pulse (BP) functions, their operational matrices and Taylor expansion a nonlinear Fredholm-Volterra integral equation converts to a nonlinear system. Some numerical examples illustrate accuracy and reliability of our solutions. Also, effect of noise shows our solutions ...
متن کاملCOLLOCATION METHOD FOR FREDHOLM-VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY KERNELS
In this paper it is shown that the use of uniform meshes leads to optimal convergence rates provided that the analytical solutions of a particular class of Fredholm-Volterra integral equations (FVIEs) are smooth.
متن کاملShifted Chebyshev Approach for the Solution of Delay Fredholm and Volterra Integro-Differential Equations via Perturbed Galerkin Method
The main idea proposed in this paper is the perturbed shifted Chebyshev Galerkin method for the solutions of delay Fredholm and Volterra integrodifferential equations. The application of the proposed method is also extended to the solutions of integro-differential difference equations. The method is validated using some selected problems from the literature. In all the problems that are considered...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Applied Mathematics
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013